The Interactive Antimicrobial Activity of *Withania somnifera* (L.) Dunal Root Extracts and Conventional Antibiotics Against some Bacterial Triggers of Autoimmune Inflammatory Diseases

Wenjing Lai1,2, Jianan Chen1,4, Ian Edwin Cock1,3, Matthew J. Cheesman1,4*1

1School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland 4222, AUSTRALIA.
2College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, CHINA.
3School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland 4111, AUSTRALIA.
4School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, CHINA.

ABSTRACT

Background: *Withania somnifera* (L.) Dunal roots are known for their anti-inflammatory and rejuvenative properties. This study focuses on the growth inhibitory activity of *W. somnifera* root extracts against some bacterial triggers of autoimmune inflammatory diseases, as well as the extracts in combination with conventional antibiotics.

Methods: *W. somnifera* root powder was extracted with solvents of varying polarity and screened for inhibition of bacterial growth. Inhibition on agar was assessed by disc diffusion techniques, whilst the minimum inhibitory concentrations (MICs) were quantified by liquid dilution assays. To screen for combinatorial effects, the *W. somnifera* root extracts were combined with a range of conventional antibiotics and tested against each bacterial strain using liquid dilution assays. Extract toxicities was examined using *Artemia* nauplii bioassays, while their phytochemical profiles were determined using standard methodologies.

Results: *W. somnifera* root extracts were unable to inhibit the growth of *P. mirabilis*, *K. pneumonia*, *A. baylyi* and *Pseudomonas aeruginosa*. However, the methanolic and aqueous extracts were good inhibitors of *Y. enterocolitica*, with MICs of 696 and 358 µg/mL respectively. These extracts also inhibited *S. pyogenes* growth, albeit with substantially higher MIC values indicative of only mild inhibition. Only small zones of inhibition were observed on agar for these extracts against both strains. Combinations of the *W. somnifera* extracts and conventional antibiotics generally produced additive or indifferent interactions, indicating that they are safe to use concomitantly without compromising the efficacy of either component. A single antagonistic combination (aqueous extract and tetracycline) against *Y. enterocolitica* was observed. All extracts were determined to be non-toxic as assessed in *Artemia* nauplii bioassays.

Conclusions: Methanolic and aqueous *W. somnifera* extracts were strong inhibitors of *Y. enterocolitica* growth and mild inhibitors of *S. pyogenes*. These extracts were also non-toxic in the *Artemia* nauplii bioassay, indicating their potential for the prevention and treatment of Hashimoto’s disease.

Key words: Ashwagandha, Multi-drug resistant bacteria, Combinational therapies, Rheumatoid Arthritis, Hashimoto’s disease.

Correspondence:

Dr. Matthew J. Cheesman and Dr. Ian Edwin Cock,
School of Pharmacy and Pharmacology, Gold Coast Campus, School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland 4111, AUSTRALIA.

Tel: +61 7 5552 9230

E-mail: m.cheesman@griffith.edu.au; l.cock@griffith.edu.au

DOI: 10.5530/pc.2018.2.17

INTRODUCTION

In recent years, there has been an increase in bacterial resistance to many conventional antibiotics and several strains of medicinally important bacterial pathogens are now multi (MDR), extensively (XDR) or totally drug resistant (TDR). There are now limited therapeutic options for the diseases caused by these pathogens. This problem is expected to be exacerbated in the future as bacteria exchange resistance genes and more strains develop MDR. The development of alternative antibacterial treatment modalities has become crucial and is considered by the World Health Organisation (WHO) to be one of the most serious challenges facing medical science. For a number of reasons (reviewed elsewhere), it is unlikely that the previous methods of antibiotic discovery/development will be as successful in the future and new treatment modalities are urgently required. Traditional medicines and herbal remedies have great potential for antimicrobial drug development and there has recently been a substantial increase in interest in this field. The traditional Indian medicinal system Ayurveda uses a variety of natural plant and fruit products to treat numerous ailments, *Withania somnifera* (L.) Dunal (Figure 1 a; commonly known as ashwagandha) root has been used for thousands of years in Indian Ayurveda to treat a wide variety of conditions. *W. somnifera* root is best known as an effective treatment for the promotion of physical and mental health, and a pharmacological basis exists for its use in the treatment of a variety of central nervous system disorders. While it also appears to possess antioxidant and anticancer properties, evidence is lacking for the ability of *W. somnifera* extracts to inhibit the growth of specific bacteria known to trigger autoimmune inflammatory diseases. Whilst much of the phytochemistry is yet to be elucidated, *W. somnifera* is rich in a variety of withanolides (Figure 1b). Previous studies that identified the bacterial triggers of some autoimmune inflammatory diseases in genetically susceptible humans have facilitated drug therapies targeting the initiating events of these diseases, thereby providing prophylactic chemotherapeutic options. *Acinetobacter baylyi* and *Pseudomonas aeruginosa* were identified as bacterial triggers for multiple sclerosis, *Klebsiella pneumoniae* has been linked to ankylosing spondylitis and *Proteus mirabilis* was found to be a bacterial trigger of rheumatoid arthritis. *Streptococcus pyogenes* is associated with rheumatic fever, pharyngitis and impetigo while *Yersinia enterocolitica* induces the autoimmune disease Hashimoto’s thyroiditis. The present study aimed to investigate the growth inhibitory activity of *W. somnifera* root extracts against *P. mirabilis*, *K. pneumonia*, *A. baylyi*, *Y. enterocolitica*, *S. pyogenes* and *P. aeruginosa*. The extracts were also tested in conjunction with conventional antibiotics to evaluate any interactive effects.
Evaluation of antibacterial activity on agar

Antibacterial activity screening of the *W. somnifera* root extracts on solid agar was assessed using a modified disc diffusion assay method.\(^{18-21}\) Extracts (10 µL) were infused onto Whatman #1 filter discs (6 mm in diameter), with negative control discs containing 10 µL of extract solvent (1% DMSO). Penicillin, erythromycin, ciprofloxacin, tetracycline and chloramphenicol discs (1 µg) were prepared on discs and used as positive controls to compare antibacterial activity, while filter discs infused with 10 µL of distilled water were used as a negative control for the antibiotics.

Minimum inhibitory concentration (MIC) determination

The minimum inhibitory concentration for each extract was determined using a microplate liquid dilution MIC method,\(^5,22\) as it is generally considered the most sensitive bacterial growth inhibitory assay. Furthermore, as microplate liquid dilution MIC assays are perhaps the most commonly used method of quantifying bacterial growth inhibition efficacy, use of this method allows for comparisons with other studies. All microplates were incubated at 37°C for 24 h following addition of samples. p-Iodonitrotetrazolium violet (INT) was obtained from Sigma-Aldrich (Australia) and dissolved in sterile deionised water to produce a 0.2 mg/mL INT solution. A 40 µL volume of this solution was added into all wells and the plates were incubated for a further 6 hours at 24-30°C. Following incubation, the MIC was visually determined as the lowest dose at which colour development was inhibited.

Fractional inhibitory concentration (FIC) assessment

Interactions between the *W. somnifera* root extracts and the conventional antibiotics were examined by determination of the sum of fractional inhibitory concentrations (ΣFIC) for each combination.\(^3\) The FIC values for each component (a and b) were calculated using the following equations where a represents the plant extract sample and b represents the conventional antibiotic:

\[
\text{FIC(a)} = \frac{\text{MIC}[a \text{ in combination with } b]}{\text{MIC}[a \text{ independently}]}
\]

\[
\text{FIC(b)} = \frac{\text{MIC}[b \text{ in combination with } a]}{\text{MIC}[b \text{ independently}]}
\]

The ΣFIC was then calculated using the formula ΣFIC = FIC(a) + FIC(b).

The interactions were classified as synergistic (ΣFIC ≤0.5), additive (ΣFIC >0.5-1.0), indifferent (ΣFIC >1.0-4.0) or antagonistic (ΣFIC >4.0).\(^{21}\)

Artemia nauplii toxicity screening

Potassium dichromate (K₂Cr₂O₇) (AR grade, Chem-Supply, Australia) was prepared in deionised water (4 mg/mL) and serially diluted in artificial seawater for use as a reference toxin. Toxicity of the *W. somnifera* root extracts, the reference toxin and the conventional antibiotics was assessed using a modified *Artemia franciscana* nauplii lethality assay.\(^{21,24}\) The LC₅₀ with 95% confidence limits for each treatment was calculated using probit analysis.

Statistical analysis

Data are expressed as the mean ± SEM of at least three independent experiments. One-way ANOVA was used to calculate differences between the control and treated groups, with a *P* value < 0.01 considered to be significant.
Table 1: Mass of dried extracted material, concentration after resuspension in deionised water, and qualitative phytochemical screenings of the *W. somnifera* root extracts.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Mass of Dried Extract (mg)</th>
<th>Resuspended Extract (mg/mL)</th>
<th>Total Phenolics</th>
<th>Water Soluble</th>
<th>Water Insoluble</th>
<th>Keller-Kiliani Test</th>
<th>Froth Persistence</th>
<th>Emulsion test</th>
<th>Salkowski Test</th>
<th>Acetic Anhydride Test</th>
<th>Froth Test</th>
<th>Capillary Test</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>200</td>
<td>20</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>320</td>
<td>32</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>12</td>
<td>1.2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloroform</td>
<td>77</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexane</td>
<td>60</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

+++ indicates a large response; ++ indicates a moderate response; + indicates a minor response; ­ indicates no response in the assay.

RESULTS

Liquid extraction yields and qualitative phytochemical screening

W. somnifera root extractions (1.5 g material) using various solvents yielded dried plant extracts ranging from 12 mg to 320 mg (Table 1). Aqueous and methanolic extracts provided significantly greater yields of extracted material relative to the ethyl acetate, chloroform and hexane counterparts, which gave low to moderate yields. The dried extracts were resuspended in 10 mL of deionised water (containing 1 % DMSO), resulting in the concentrations presented in Table 1.

Qualitative phytochemical studies showed that methanol and water extracted the greatest amount, and widest range of, phytochemicals (Table 1). These solvents extracted high levels of phenolic compounds and flavonoids, as well as moderate levels of saponins and low levels of tannins and triterpenoids. The ethyl acetate extracts generally extracted similar but lower phytochemical profiles as compared to the methanolic and aqueous extracts. In contrast, the chloroform and hexane extracts were generally devoid of detectable levels of all classes of the screened phytochemicals.

Antibacterial activity

To determine the ability of the crude plant extracts to inhibit the growth of the bacterial triggers of selected autoimmune inflammatory diseases, aliquots (10 µL) of each extract were screened using a disc diffusion assay. None of the *W. somnifera* extracts tested caused inhibition of the growth of the bacterial triggers of rheumatoid arthritis (*P. mirabilis*), ankylosing spondylitis (*K. pneumoniae*) and multiple sclerosis (*A. baylyi* and *P. aeruginosa*) (results not shown). In contrast, the methanolic and aqueous *W. somnifera* extracts were good inhibitors of bacterial triggers of rheumatic fever (*S. pyogenes*; Figure 2a) and Hashimoto’s disease (*Y. enterocolitica*; Figure 2b) on solid agar, indicating that they may be useful in the prevention and treatment of these diseases.

Quantification of minimum inhibitory concentration (MIC)

The antimicrobial efficacies of the *W. somnifera* extracts were further quantified by determining the MIC values (Table 2). The methanolic and aqueous extracts were particularly effective at inhibiting growth of *Y. enterocolitica*, with MIC values of 696 and 358 µg/mL, respectively. *S. pyogenes* growth was inhibited at MIC values of 6260 and 9690 µg/mL, respectively, for the methanolic and aqueous extracts, indicating a much weaker antimicrobial activity towards this strain as compared to *Y. enterocolitica* was found in liquid cultures.

Determination of combinational effects: Fractional inhibitory concentration (FIC) assessment

Fractional inhibitory concentration (FIC) determination was performed using a 1:1 ratio of each *W. somnifera* extract and conventional antibiotic and sums of FIC (ΣFIC) were calculated (Table 3). As all bacterial species were completely resistant to the ethyl acetate, chloroform and hexane extracts, no ΣFIC values could be determined for combinations containing these extracts. Similarly, as *P. mirabilis*, *K. pneumonia*, *A. baylyi* and *P. aeruginosa* were resistant to all extracts, no ΣFIC values could be determined for these bacteria. ΣFIC values were calculated for the remaining combinations and the class of interaction was determined for each.

Additive interactions between the aqueous extract and penicillin or ciprofloxacin were observed against *S. pyogenes*, with an additive interaction also observed between the methanolic extract and ciprofloxacin for the same strain. A single combination produced an additive interac-
Lai et al.: W. somnifera Inhibits Some Bacterial Triggers of Inflammation

Figure 2: Antibacterial activity of W. somnifera root extracts against (a) S. pyogenes and (b) Y. enterocolitica measured as zones of inhibition (mm). M = methanolic extract; W = aqueous extract; E = ethyl acetate extract; C = chloroform extract; H = hexane extract. Positive control = Tet (tetracycline; 1 μg). Negative control (NC) = 1% DMSO. Results are expressed as mean zones of inhibition of at least three replicates ± SEM. * indicates results that are significantly different to the negative control (P<0.01).

Table 2: MIC values for W. somnifera root extracts against P. mirabilis, K. pneumoniae, A. baylyi, P. aeruginosa, S. pyogenes and Y. enterocolitica growth, and LC₅₀ values against Artemia nauplii (µg/mL).

<table>
<thead>
<tr>
<th></th>
<th>P. mirabilis</th>
<th>K. pneumoniae</th>
<th>A. baylyi</th>
<th>P. aeruginosa</th>
<th>S. pyogenes</th>
<th>Y. enterocolitica</th>
<th>W. somnifera extracts</th>
<th>Antibiotic controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6260</td>
<td>0.002</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9670</td>
<td>0.002</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0.005</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0.37</td>
</tr>
<tr>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>Chl</td>
<td>1.11</td>
<td>3.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
<td>11.11</td>
</tr>
<tr>
<td>Tet</td>
<td>0.37</td>
<td>0.041</td>
<td>0</td>
<td>0.123</td>
<td>0.041</td>
<td></td>
<td>0.002</td>
<td>ND</td>
</tr>
<tr>
<td>Cip</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.37</td>
<td>0.002</td>
<td></td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ALA = Artemia lethality assay; M = methanol extract; W = water extract; E = ethyl acetate extract; C = chloroform extract; H = hexane extract; Pen = penicillin; Ery = erythromycin; Chl = chloramphenicol; Tet = tetracycline; Cip = ciprofloxacin; - = an MIC or LC₅₀ was not determined as there was no inhibition at highest concentration tested. ND = LC₅₀ was not determined.

Quantification of toxicity

All extracts were initially screened in the Artemia nauplii assay at 2000 µg/mL (Figure 3). Additionally, potassium dichromate was also tested in the bioassay as a reference toxin. The reference toxin was rapid in its onset of mortality, promoting nauplii death within the first 3 h of exposure, with 100% mortality evident within 5 h (data not shown). The methanolic and aqueous extracts also induced 100% mortality following 24 h exposure. All other extracts induced <50% mortality and were therefore deemed to be non-toxic. To further quantify the effects of toxin concentration on the initiation of mortality, the methanolic and aqueous extracts were serially diluted in artificial seawater to test across
Lai et al.: W. somnifera Inhibits Some Bacterial Triggers of Inflammation

Table 3: ΣFIC values of W. somnifera extracts in combination with conventional antibiotics against S. pyogenes and Y. enterocolitica.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Penicillin</th>
<th>Erythromycin</th>
<th>Chloramphenicol</th>
<th>Tetracycline</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pyogenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1.53</td>
<td>1.40</td>
<td>CND</td>
<td>1.60</td>
<td>0.57</td>
</tr>
<tr>
<td>W</td>
<td>0.53</td>
<td>1.40</td>
<td>CND</td>
<td>1.61</td>
<td>0.68</td>
</tr>
<tr>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>C</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>H</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

| **Y. enterocolitica** |
M	ND	ND	ND	0.68	1.01
W	ND	ND	ND	18.01	1.01
E	ND	ND	ND	ND	ND
C	ND	ND	ND	ND	ND
H	ND	ND	ND	ND	ND

M = Methanol extract; W = aqueous extract; E = ethyl acetate extract; C = chloroform extract; H = hexane extract; CND = indicates that a FIC could not be determined as the combination was not inhibitory; ND = ΣFIC could not be determined as at least one component of the combination was not inhibitory at any concentration tested. Additive (>0.5 to ≤1.0); Indifferent (>1.0 to ≤4.0); Antagonistic (>4.0).

Figure 3: The lethality of the W. somnifera extracts (2000 µg/mL) and the potassium dichromate (1000 µg/mL) and seawater controls towards Artemia nauplii after 24 hours exposure. M = methanolic extract; W = aqueous extract; E = ethyl acetate extract; C = chloroform extract; H = hexane extract; NC = negative (seawater) control; PC = potassium dichromate control (1000 µg/mL). Results are expressed as mean % mortality ± SEM.

a range of concentrations in the Artemia nauplii bioassay. The 24 h LC50 values of the W. somnifera root extracts towards A. nauplii are displayed in Table 2. No LC50 are reported for the ethyl acetate, chloroform or hexane extracts as < 50 % mortality was seen in all tested concentrations. LC50 values substantially >1000 µg/mL were determined for the methanolic and aqueous extracts. As extracts with LC50 values >1000 µg/mL towards Artemia nauplii have been defined as being non-toxic in this assay,29 each of the W. somnifera root extracts were deemed to be non-toxic.

DISCUSSION

W. somnifera is used in Ayurveda for a wide variety of therapeutic purposes. It is perhaps best known as a potent booster of the immune system, as a general tonic for well-being, and as a rejuvenative agent.4 The root extracts also have documented uses for inhibiting bacterial growth and suppress the production of pro-inflammatory cytokines, thereby blocking inflammatory conditions, including arthritis, as reviewed elsewhere.25 Therefore, this study aimed to confirm the antibacterial activity of a panel of root extracts against bacterial species known to trigger autoimmune diseases in genetically susceptible individuals.14–17 Whilst we did detect some antibacterial activity in this study, most bacterial species examined were refractory to inhibition by the extracts. Only S. pyogenes and Y. enterocolitica were susceptible to inhibition by the methanolic and aqueous extracts, and the MIC values against S. pyogenes were indicative of only mild inhibitory activity. In contrast, the MIC values (358 and 696 µg/mL for the aqueous and methanolic extracts respectively) against Y. enterocolitica indicated much greater potencies. The relatively low antibacterial strength determined in our study contrasts with several studies that have reported strong antibacterial activity for a variety of W. somnifera extracts. One publication reported potent inhibition of Salmonella typhimurium and Escherichia coli by W. somnifera leaf methanolic and hexane extracts.26 However, the definition of potency in that study was based purely on the size of the zone of inhibition in disc diffusion assays. The authors did not evaluate the MIC values for the extracts, rendering a comparison of the potencies impossible. Furthermore, that study screened a single high concentration of each extract (100mg/mL). Inhibition at this concentration is not necessarily indicative of high potency, and dose response studies are required. It is also noteworthy that this earlier study involved different bacterial species to those examined in the present study, which may also contribute to the differences.

A more recent report by Alam et al.27 examined a different panel of bacteria, including some of the species included in our study. That study reported large zones of inhibition against P. aeruginosa and K. pneumonia (approximately 20–26 mm for the ethanolic extract). Whilst we did not prepare ethanolic extracts in our study, we did include methanolic extracts. These two solvents have similar polarity and can generally extract similar chemical constituents. The previous study also determined MIC values and described the antibacterial activity as high based on these results. However, the MIC values reported for the W. somnifera root ethanolic extract were 50 mg/mL. These values would generally be regarded as inactive in most studies rather than the strong antibacterial activity...
which had been described in that report. Indeed, in our study, we class >10 mg/mL as being inactive, 5–<10 mg/mL as low activity, 1–<5 mg/mL as moderate activity and <1 mg/mL as strong activity. If those criteria were used, the previously reported MIC values in the earlier study would instead be classed as inactive.

The combinational studies involving extracts potentiating the activity of conventional antibiotics are perhaps of more interest. Several additive combinatorial interactions were noted. In particular, the water extract potentiated the activity of penicillin and ciprofloxacin against S. pyogenes. The methanolic extract potentiated ciprofloxacin against S. pyogenes and tetracycline against Y. enterocolitica. As such, these combinations would be beneficial against rheumatic fever and Hashimoto’s disease, respectively, as they have greater efficacy than either component alone. Of the remaining combinations, the majority were either non-interactive, or were unable to be determined as at least one of the components in the combination showed no inhibition of bacterial growth when tested alone. Therefore, whilst using these combinations would have no additional therapeutic benefit, the components would not impede the activity of the other component. Notably, a single combination (aqueous extract in combination tetracycline) produced an antagonistic effect against Y. enterocolitica. This suggests that this combination should be avoided in the treatment of Hashimoto’s disease (and any other diseases caused by this bacterium).

Whilst a thorough examination of the phytochemical composition of the W. somnifera extracts was beyond the scope of this study, we detected high levels of flavonoids in the extracts that were found to exert anti-bacterial effects. Flavonoids have previously been reported to have good growth inhibitory activity against a broad panel of pathogenic bacteria and it is likely that they may contribute to the potent bacterial growth inhibitory activity observed in our study. Other phytochemical classes may also contribute this activity. Saponins and triterpenes were also detected in the W. somnifera methanolic and aqueous extracts. This is consistent with previous studies which reported withanolides (Figure 1b) as abundant in similar extracts. Some terpenoids have potent broad spectrum antibacterial activity and it is therefore likely that they also contribute to the inhibition of the bacteria examined in our study. Further evaluation of the phytochemical composition and isolation of the active components is required to more rigorously assess the mechanism of bacterial growth inhibition. Of further note, all extracts displayed low toxicity in the Artemia nauplii bioassay. Indeed, LC₅₀ values ≥1000 µg/mL are generally deemed to be non-toxic for crude plant extracts. Only the methanolic and aqueous extracts induced any mortality and in both cases were substantially >1000 µg/mL. These findings are also consistent with studies which have demonstrated the W. somnifera root extracts to be non-toxic in rodents. Therefore, it is likely that the W. somnifera extracts are safe for both prophylactic and therapeutic use. However, further toxicity studies using mammalian cell lines are required to confirm the safety of these extracts.

CONCLUSION

The strong growth inhibitory activity of W. somnifera against Y. enterocolitica and its lack of toxicity render it a promising option for the prevention and treatment of Hashimoto’s disease and any other infections of this bacterium. Further studies are required to isolate the compound(s) responsible for this activity and to elucidate the antibacterial mechanisms involved.

ACKNOWLEDGEMENT

The authors are grateful to Associate Professor Jennifer Wilson for the use of the facilities at which much of the work included in this manuscript was performed. Financial support for this work was provided by the Environmental Futures Research Institute and the Quality Use of Medicines Network, Griffith University, Australia.

REFERENCES

5. Ianko A, Cock IE. The interactive antimicrobial activity of contentious antibiotics and Flavonoids have previously been reported to have good growth inhibitory activity against a broad panel of pathogenic bacteria and it is likely that they may contribute to the potent bacterial growth inhibitory activity observed in our study. Other phytochemical classes may also contribute this activity. Saponins and triterpenes were also detected in the W. somnifera methanolic and aqueous extracts. This is consistent with previous studies which reported withanolides (Figure 1b) as abundant in similar extracts. Some terpenoids have potent broad spectrum antibacterial activity and it is therefore likely that they also contribute to the inhibition of the bacteria examined in our study. Further evaluation of the phytochemical composition and isolation of the active components is required to more rigorously assess the mechanism of bacterial growth inhibition. Of further note, all extracts displayed low toxicity in the Artemia nauplii bioassay. Indeed, LC₅₀ values ≥1000 µg/mL are generally deemed to be non-toxic for crude plant extracts. Only the methanolic and aqueous extracts induced any mortality and in both cases were substantially >1000 µg/mL. These findings are also consistent with studies which have demonstrated the W. somnifera root extracts to be non-toxic in rodents. Therefore, it is likely that the W. somnifera extracts are safe for both prophylactic and therapeutic use. However, further toxicity studies using mammalian cell lines are required to confirm the safety of these extracts.

CONCLUSION

The strong growth inhibitory activity of W. somnifera against Y. enterocolitica and its lack of toxicity render it a promising option for the prevention and treatment of Hashimoto’s disease and any other infections of this bacterium. Further studies are required to isolate the compound(s) responsible for this activity and to elucidate the antibacterial mechanisms involved.

ACKNOWLEDGEMENT

The authors are grateful to Associate Professor Jennifer Wilson for the use of the facilities at which much of the work included in this manuscript was performed. Financial support for this work was provided by the Environmental Futures Research Institute and the Quality Use of Medicines Network, Griffith University, Australia.

CONFLICTS OF INTEREST

The authors report no conflicts of interest.

ABBREVIATIONS

DMSO: Dimethyl sulfoxide; LC₅₀: The concentration required to achieve 50% mortality; MIC: minimum inhibitory concentration.
Lai et al.: W. somnifera Inhibits Some Bacterial Triggers of Inflammation

