Facebook Twitter Instagram
    • Home
    • About Journal
      • Aim and Scope
      • Editorial Board
      • Indexing Info
      • Contact Us
    • Browse Issues
      • Articles in Press
      • Current Issue
      • Past Issues
    • For Authors
      • Instructions to Authors
      • Article Processing Charges
      • Submit your article
      • Downloads
    Facebook Twitter Instagram
    Pharmacognosy Communications
    • Home
    • About Journal
      • Aim and Scope
      • Editorial Board
      • Indexing Info
      • Contact Us
    • Browse Issues
      • Articles in Press
      • Current Issue
      • Past Issues
    • For Authors
      • Instructions to Authors
      • Article Processing Charges
      • Submit your article
      • Downloads
    Pharmacognosy Communications
    retyeyutreu
    Original Article

    An upscaled extraction protocol for Tasmannia lanceolata (Poir.) A.C. Sm.: Anti-bacterial, anti-Giardial and anticancer activity

    wadmin2By wadmin2August 6, 2016Updated:August 11, 2021No Comments2 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn WhatsApp Pinterest Email

    Lou Vallette1,2, Camille Rabadeaux1,2, Joseph Sirdaarta1,3, Craig Davis4,5, Ian Edwin Cock1,3*
    1Environmental Futures Research Institute, Griffith University, Brisbane, AUSTRALIA.
    2School of Biology, Ecole de Biologie Industrielle (EBI), Cergy, FRANCE.
    3School of Natural Sciences, Griffith University, Brisbane, AUSTRALIA.
    4Botanical Medicine Research Institute, Brisbane, AUSTRALIA.
    5Bioextracts P/L, Brisbane, AUSTRALIA.

    Pharmacognosy Communications,2016,6,4,238-254.
    DOI:10.5530/pc.2016.4.7
    Published: August 2016
    Type: Original Article

    ABSTRACT

    Background: Tasmannia lanceolata is an endemic Australian plant with a high anti-oxidant capacity. Liquid solvent extractions of T. lanceolata inhibit bacterial growth and block proliferation of several carcinomas and the gastrointestinal parasite Giardia duodenalis. Despite these promising therapeutic properties, methods for the rapid extraction of large quantities of T. lanceolata are lacking. This study aimed to develop a rapid supercritical extraction method to produce extracts which retain therapeutic propertyes and phytochemistry characteristics. Materials and Methods: T. lanceolata fruit and leaf were extracted by both solvent maceration extraction and supercritical fluid extraction (SFE). The extracts were tested for the ability to inhibit bacterial and G. duodenalis growth. Inhibition of CaCo2 and HeLa cancer cells was evaluated using MTS-based colorimetric cell proliferation assays. Toxicity was evaluated using an Artemia franciscana nauplii bioassay and GC-MS headspace analysis was used to evaluate phytochemical similarity between the extracts. Results: T. lanceolata berry and leaf SFEs displayed strong bacterial growth inhibitory activity against bacterial triggers of autoimmune inflammatory diseases, with efficacies similar to the smaller scale liquid solvent extractions. The growth inhibition of the berry SFE was particularly noteworthy against P. mirabilis and K. pneumoniae, with MIC values of approximately 160 and 190 μg/mL, respectively. The berry and leaf SFE extracts also had similar antiproliferative potencies against G. duodenalis (492 and 375 μg/mL, respectively), CaCo2 (4133 and 3347 μg/mL, respectively) and HeLa carcinomas (2652 and 3497 μg/mL, respectively) to those determined for the corresponding liquid solvent extractions. GC-MS analysis of the berry SFE revealed similar terpenoid components and similar abundances to those in liquid solvent berry extraction. Furthermore, all SFEs were either non-toxic or of only low toxicity in the Artemia franciscana toxicity assay. Conclusion: The T. lanceolata SFE retained the tested therapeutic properties, were nontoxic and had similar phytochemical profiles as smaller scale liquid solvent extractions. Thus, SFE is a viable method of rapidly extracting large masses of T. lanceolata plant material to produce quality extracts which retain therapeutic properties.

    Key words: Tasmanian pepper, Mountain pepper berry, Supercritical fluid extraction, Antibacterial activity, Giardia duodenalis, Anti-proliferative activity, Anti-cancer activity, Polygodial.

    Download PDF
    Share. Facebook Twitter Pinterest LinkedIn Tumblr WhatsApp Email
    About Journal
    About Journal

    Pharmacognosy Communications [Phcog Commn.] is a quarterly journal published by Phcog.Net. It is a peer reviewed journal aiming to publish high quality original research articles, methods, techniques and evaluation reports, critical reviews, short communications, commentaries and editorials of all aspects of medicinal plant research. The journal is aimed at a broad readership, publishing articles on all aspects of pharmacognosy, and related fields. The journal aims to increase understanding of pharmacognosy as well as to direct and foster further research through the dissemination of scientific information by the publication of manuscripts. The submission of original contributions in all areas of pharmacognosy are welcome.
    Indexed and Abstracted in : Chemical Abstracts, Excerpta Medica / EMBASE, Google Scholar, CABI Full Text, Ulrich’s International Periodical Directory, ProQuest, Journalseek & Genamics, PhcogBase, EBSCOHost, Academic Search Complete, Open J-Gate, SciACCESS.
    Rapid publication: Average time from submission to first decision is 30 days and from acceptance to In Press online publication is 45 days.
    Open Access Journal: Phcog Commn. is an open access journal, which allows authors to fund their article to be open access from publication.

    © 2025 Pharmacognosy Communications. Maintained by Manuscript TechnoMedia LLP.

    Type above and press Enter to search. Press Esc to cancel.

    Scroll Up